webvic-c

twitter linkedin acp contact

Technology

Illustration showing how the sponge nanocomposite material recovers phosphate and metals from water. (Image source: Kelly Matuszewski, Northwestern University)

Researchers have created a functional sponge that is capable of efficiently soaking up certain pollutants from water and then releasing them on demand

Industrial manufacturing and agriculture, in particular, experience mineral and fertiliser loss due to runoff, leaving valuable non-renewable resources as pollutants in bodies of water. Those resources include heavy metals like zinc and copper and also phosphate. 

The innovation presents a reusable and low-cost solution for cleaning storm runoff while simultaneously recovering valuable metals like zinc and copper, as well as phosphate. Using surface iron oxide nanoparticles specialised for capturing specific contaminants, the sponge collects the minerals and then discharges them only when triggered by changes in pH. These findings were achieved by researchers at Northwestern University and published in the American Chemical Society's journal Environmental Science and Technology Water.

Doctoral student and first author on the paper, Kelly Matuszewski believes it is important to understand the interaction between these minerals and utilise them, rather than finding ways to discard them. Through her research she discovered that lowering water pH flushed out the captured copper and zinc from the sponge, while raising water pH loosened the phosphates.

In an attempt to commercialise the sponge-based technology, Vinayak Dravid, co-author and Northwestern professor of materials science and engineering has co-founded a startup with additional NSF support through the Small Business Innovation Research programme, which will further develop the material for real-life scenarios.

"The technology can be used as a universal sorbent or 'catch-all,' or it can be tailored to certain groups of contaminants like metals, plastics or nutrients," said Dravid. In their future research, the team plans to account for biofilms, clogging or water flow dynamics on the sponge's performance, while also testing the maximum mineral levels the sponge can absorb.

 

Smart greenhouses utilise sensors responsible for heat control to modify in-house conditions based on the indoor climate. (Image source: Adobe Stock))

The continual development of AI technologies has opened up potential for their use in various farming systems, including greenhouses

As agriculture continues to be one of the top revenue generating sectors in Africa, the popularity of greenhouse systems has seen a significant increase in recent years. Various fruits, vegetables and high-value crops are now being grown in specially designed greenhouse systems throughout the year, irrespective of weather conditions in the region.

Greenhouses are a mode of controlled environment cultivation that aim to create micro-climates that are favourable for producing crops during any time of the year. One of the main advantages of greenhouse systems is their ability to regulate temperature, maintaining optimal conditions in both hot and cold climates. In addition, greenhouses offer protection against pests and diseases, owing to their transparent structures clad with flexible materials that provides excellent ventilation. Moreover, they also optimise the use of other humidification and energy saving technologies that facilitate climate management, thereby boosting overall yield and production.

Since these indoor growing environments mostly require manual operation, installing automation technologies help in maintaining the desired internal environment with reduced reliance on farm labour. Also known as IoT smart greenhouses, these automated systems utilise a wide range of technologies including sensors responsible for heat control that modify in-house conditions based on the indoor climate. Moreover, computer automation software is often used to adjust humidity and venting, while Co2 monitors are used to regulate gas levels in the atmosphere.

Other notable control systems include programmes that automatically dispense pesticides in calculated amounts; equipment control systems that handle the movement of installed lights and planting equipment; fertigation management systems that automatically dispense water through water systems and lastly, drip irrigation systems that use soil sensors to monitor moisture levels in the soil.

The project is designed to validate wheat germ cell-free protein synthesis as a rapid and affordable approach to drug development. (Image source: Adobe Stock)

Wamego-based company, Tritica Biosciences, along with three other partners have joined hands to work under Boston-based Ginkgo Bioworks, on a million-dollar project aimed at exploring the potential of the wheat crop in transforming drug development

The project is designed to validate wheat germ cell-free protein synthesis as a rapid and affordable approach to drug development. This powerful innovation introduces a new method of biomanufacturing that has broad applications across various sectors ranging from food to pharmaceuticals.

The ARPA-H project, known as Wheat-based High efficiency Enzyme and API Technology (WHEAT) is one of the first initiatives within ARPA-H’s Scalable Solutions Office, which aims to transform the health by improving the speed, scale and access to medical treatments.

The project aims to boost domestic manufacturing of critical medicines by producing them when and where they are needed. Many active pharmaceutical ingredients (APIs) are currently affected by fragile global supply chains, and reshoring biomanufacturing will help stabilise the supply of critical, life-saving drugs.

According to a news release from Ginkgo Bioworks, WHEAT’s innovations will include post-translational modifications to establish a foundation suitable for producing biologics. 

“By harnessing the power of wheat based cell-free systems, we’re planting the future of medicine, helping to make production more efficient, flexible and localised,” said Dr Chris Miller, founder and CSO, Tritica Biosciences

Value Line Steering system marks a significant step toward more sustainable, efficient, and profitable farming practices. (Image source: Topcon Agriculture)

Global leader in precision farming technology, Topcon Agriculture has announced the launch of its Value Line Steering solution, aimed at increasing accessibility of precision farming for small and medium-sized farming operations

Advanced autosteering capabilities will now be available to a wider range of farmers and provide an affordable and easy-to-use solution compatible with a broad variety of tractors, including front-wheel-steer models and those compliant with ISOBUS-UT standards. Its simple design allows users unfamiliar with high-tech farming equipment to quickly adopt the system.

Moreover, the Value Line Steering solution enables older tractors to operate at sub-5 cm accuracy levels previously reserved for new, high-end machinery.

"With diesel, fertiliser, and chemical costs all rising, it's more important than ever to maximise efficiency," said Aaron Freeman, a fourth-generation farmer from Koolunga, South Australia. "The Value Line Steering system saves resources, reduces overlap, and boosts profitability."

Telematics enhances efficiency and uptime for seed research. (Image source: ALMACO)

ALMACO Telematics is a next-generation system delivering remote access to real-time machine data—boosting efficiency, performance, and uptime for seed research professionals

Available on both the R1 Single-Plot and R2 Twin-Plot Research Combines, it’s the only telematics offering integrated specifically for seed research, reinforcing ALMACO’s leadership in precision agtech.

With insights into numerous machine parameters, the platform provides deep visibility into settings, location, diagnostics, software, and performance. This empowers fleet managers and researchers to easily monitor and optimise machine use for peak operational output.

Maximising uptime through smart diagnostics

A key feature of ALMACO Telematics is its remote diagnostics and repair capability, protecting uptime and reducing disruptions. Over 30% of service issues can be resolved remotely, removing the need for a field technician and delivering cost-effective value.

Simplified software upgrades

The system enables remote software updates, ensuring machines stay up to date without site visits. This reduces downtime and maintenance costs while supporting continuous tech improvement.

Enhanced fleet oversight

From their desks, managers can track machine performance and advise operators to refine seed trial accuracy. Telematics interfaces can also be remotely customised to support the specific goals of different research operations, improving data precision and machine functionality.

A smart investment for research operations

By reducing field calls, improving uptime, and enhancing resale value, ALMACO Telematics offers a strong return on investment. With its real-time oversight and proactive maintenance tools, seed research professionals can operate with confidence and lower costs.

“The integration of ALMACO Telematics marks a significant step forward in precision seed research,” said Mat Titus, service director at ALMACO. “By offering real-time data access and remote diagnostics, we are enabling researchers to focus on what matters most—developing the next generation of seed innovations.”


More Articles …