webcam-b

Machinery & Equipment

NPHarvest’s hardware can catch up to 90% of the excess but valuable nutrients from wastewater. (Image source: NPHarvest)

Finnish startup, NPHarvest has raised US$2.2mn to take its proprietary nutrient catcher machine to the market

While nutrient fertilisers are essential for securing food production, excessive amounts of fertilisers—particularly nitrogen and phosphorus—which end up in the environment through wastewater or nutrient leaching from agricultural areas, pollute the ground and cause eutrophication in seas and lakes. This in turn causes an overgrowth of algae and weeds, especially toxic blue-green algae, which depletes oxygen and is a threat to animal life. Overaccumulation of nutrients might also result in nutrient deficiencies in plants. 

NPHarvest's nutrient catcher which is installed in wastewater management systems, enables the separation and collection of excess nutrients from concentrated wastewaters. These can then be recycled and sold back to the fertiliser industry, thus making businesses more profitable, mitigating eutrophication and enhancing local food security. The hardware can catch up to 90% of the excess but valuable nutrients from wastewater. Once the technology has separated the nutrients, they can be taken back to the fertiliser companies. NPHarvest’s process also uses very little energy, as it does not require heating or pressure increase, thereby reducing the costs of the process even further.

The new funding will allow NPHarvest to build the first commercially ready nutrient catcher, ready to be installed in their clients’ facilities. Moreover, by keeping the production costs as low as possible, the nutrient catcher can scale to different use cases and fit different facilities, thanks to the process' modular design. 

“No one has done nutrient catching on a real commercial level, which made us as foodtech investors impressed with NPHarvest and its unique technology," said Mika Kukkurainen, partner at Nordic Foodtech VC. "Ensuring food security while protecting the environment is one of the top priorities in the food system. NPHarvest´s technology has what it takes to combine these aspects in a very interesting business model.”  

Development engineer of Swedish NSVA, Northwest Skåne Water and Wastewater, Hamse Kjerstadius also stated that NPHarvest’s technology for nitrogen and phosphorus recovery had the potential to allow increased nutrient recovery from wastewater. This was seen as a promising method that could aid municipalities in reaching reduced climate impacts.

For more information, visit: http://npharvest.fi/

Research from WWF and Tesco shows that around 15% of all food produced, is lost on farms during, around and after harvest worldwide annually. (image source: Adobe Stock)

WWF in partnership with the Consumer Goods Forum (CGF), has launched the new Global Farm Loss tool, enabling growers of all sizes to measure and report on-farm food loss with ease and accuracy

By providing actionable insights, the tool enables growers and buyers to map their current loss levels and develop new channels to utilise more of what is grown. The tool—which can be used for all crops, particularly fruits, vegetables and tree nuts—is capable of estimating the surplus left behind in-field post-harvest and at further stages across a farm’s operations. Apart from being user-friendly, the platform provides a simplified approach to help farmers and their buyers identify and address the cause of their on-farm food loss and its associated impacts, such as scope 3 emissions.

“We need visibility to identify food loss hotspots and understand the reason behind them,” said senior director of Food Loss and Waste at WWF, Pete Pearson. “The Global Farm Loss Tool is designed to be part of that solution, helping fill the crucial gap of tracking primary and actionable food loss data at the farm level of global supply chains.”

With adequate support from the CGF, the tool has also been beta tested through the Food Waste Coalition, which is closely aligned with the United Nations Sustainable Development Goal (SDG) 12.3 and aims to halve global food loss and waste by 2030. Working with Coalition members, the CGF and WWF will continue to assess the impact of the new tool, reviewing how to improve the tool’s user experience, expand its utility in the field and for more food types across the global supply chain, and promote its usage to new growers and suppliers.

Director of Health and Sustainability at the CGF, Sharon Bligh highlighted the importance of growers in ensuring the sustainability of a food system. “The CGF is committed to supporting our members to help growers in their supply chains to track, address and ultimately reduce the footprint of agriculture. This data is essential for accelerating our transition to a more efficient and circular food system,” said Bligh. The Global Farm Loss Tool is compatible with existing reporting programmes, including World Resources Institute’s (WRI) and the United Nations Food and Agriculture Organisation’s Food Loss Index, among others.

It is now available free of charge to growers and farmers worldwide at: https://www.globalfarmlosstool.org/ 

The partnership marks a significant milestone in the agriculture sector. (Image source: Adobe Stock)

Orchard harvest equipment manufacturer, Flory Industries and leading orchard harvest autonomy provider, Bonsai Robotics have recently announced their collaboration to develop a product which will be unveiled at the upcoming World Ag Expo, scheduled to be held in the city of Tulare, California next year

Focusing on nut sweepers, Flory's Super V sweeper is already arguably the most efficient piece of nut harvesting equipment available today. With the integration of Bonsai's technology, it is expected to enhance the operator's productivity even more, while also reducing operational costs, and increasing sustainability in farming practices. By combining Flory's extensive experience and market presence with Bonsai's innovative technological prowess, this partnership therefore, marks a significant milestone in the agriculture sector.

"At Bonsai, we are thrilled to partner with Flory, a company that shares our vision for the future of agriculture," said CEO of Bonsai Robotics, Tyler Niday. "This collaboration allows us to bring our advanced robotics technology to a wider market, revolutionising how farming is done. The Super V sweeper is just the beginning of what we believe will be a transformative era in agricultural technology."

For more information, visit: https://www.goflory.com/ and https://www.bonsairobotics.ai/ 

Robot crowd-puller at the DLG Field Days 2022 at the Kirschgartshausen trial farm in Mannheim. (Image source: DLG)

The FarmRobotix platform celebrates premiere at the DLG Feldtage 2024, which will take place from 11-13 June at the estate Brockhof in Germany

Aimed at farmers, manufacturers, start-ups and technology providers, FarmRobotix offers an international platform farmers and experts seeking compact and comprehensive information on the latest developments in robotics, AI, automation and digital solutions in crop production. Moreover, besides the option to explore innovative technologies, the platform also offers networking and knowledge sharing opportunities to representatives from science and research as well as development engineers, investors and venture capitalists. 

With a focus on farming requirements for digital technologies, FarmRobotix plays a role in solving the challenges that lie in the application of digital and autonomous technologies in crop farming. For instance, although a plethora of digital solutions are available to farmers for performing crop cultivation tasks, each digital solution provider supplies a customised software system to use the digital tools and data. Therefore, their application requires prior knowledge on part of the user. 

This is where the FarmRobotix system comes into picture. Florian Schiller, an expert in digitalisation at the International DLG Crop Production Centre (IPZ) in Bernburg, Saxony-Anhalt, explained that the FarmRobotix platform could play a role in providing impetus in the dialogue between farmers, manufacturers and science in order to make the digital applications of different manufacturers compatible with each other. 

Schiller further explained the complexity faced by robots in crop cultivation, since the difficulty level of the tasks to be performed by agricultural robots was comparatively greater than the tasks involved in industrial production. 

DLG’s IPZ farm is part of several research projects on digitalisation and AI in crop production, including the NaLamKI project funded by Germany’s Federal Ministry of Economic Affairs. NaLamKI which stands for ‘Sustainable Agriculture with AI,’ is aimed at developing AI services for agriculture, capable of analysing data from conventional and autonomous agricultural machinery, satellites and drones, combining them in a software service platform and make the results accessible through open interfaces. 

As an associated partner in the project, the IPZ is working on the early detection of fungal diseases in wheat using AI. The aim of AI-supported detection of fungal diseases, which is being researched in the NaLamKI project, is to use multi- and hyperspectral image analysis to establish when a fungal infection has taken place in a crop. Apart from fungal pathogens however, the spectral properties of the leaf surface are influenced by a variety of external factors such as drought or plant nutrition. 

"It is therefore always crucial for AI systems that the data delivers accurate information about the properties to be recognised,” said Schiller. “Otherwise, AI models do not reflect what they are supposed to provide information about.”

For more information, visit: https://dlg-feldtage.de/en/

In addition to its scientific validation, BeCrop Technology stands out for its accessibility via API connections. (Image source: Adobe Stock)

Global agtech company, Biome Makers recently announced its contribution to the publication of two scientific studies validating the efficacy and reliability of the company’s revolutionary technology

These landmark papers demonstrate a significant leap forward in the field of soil health intelligence and predicting soil functionality. The first study titled 'Physicochemical properties and microbiome of vineyard soils from DOP Ribeiro (NW Spain) are influenced by agricultural management,' evaluated the impact of conventional and sustainable management systems of vineyards from DOP Ribeiro on the soil’s condition. The second study, titled 'Enrichment of putative plant growth promoting microorganisms in biodynamic compared to organic agriculture soils,' investigates regenerative versus organic agricultural soils in three locations in Germany and 21 locations in France.

Both these studies highlight the effectiveness of Biome Makers’ technology, BeCrop, and its proprietary indexes in microbial metabolism, soil bio-sustainability, while also detecting stress, nutrient deficiencies, and correlating with different management practices. The significance of these findings extends beyond Biome Makers’ own technology, by also highlighting the superiority of the soil database and intelligence over others in the market.

In addition to its scientific validation, BeCrop Technology stands out for its accessibility via API connections. This means that BeCrop's powerful soil intelligence solutions can seamlessly integrate into existing agricultural systems, enabling farmers and agricultural professionals to harness the benefits of advanced soil health assessment without disrupting their workflow.

"These papers are a testament to our commitment to transparency and scientific excellence," said Biome Makers’ Chief Science Officer and co-founder, Dr Alberto Acedo. "By opening our technology for peer review and validation, we aim to foster trust and collaboration while pushing the boundaries of soil health data and innovative technology."

For more information, visit: https://biomemakers.com/

More Articles …